

ADITYA ENGINEERING COLLEGE

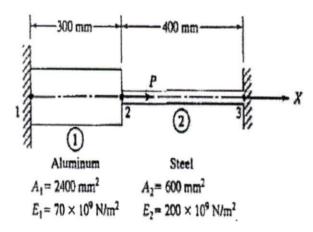
An Autonomous Institution

Approved by AICTE • Permanently Affiliated to JNTUK • Accredited by NAAC with 'A' Grade Recognised by UGC under sections 2(f) and 12(B) of UGC Act, 1956 Aditya Nagar, ADB Road, Surampalem - 533437, Near Kakinada, E.G.Dt., Ph:99498 76662

Department of Mechanical Engineering

B.Tech - VII Semester (2021-22) Teaching Method - Tutorial

Course Code


following:

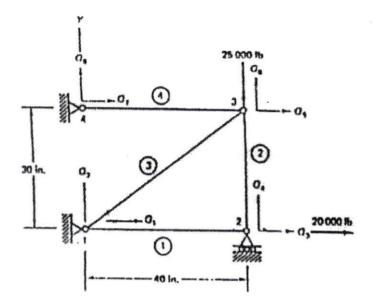
: 171ME7T18

Name of the Course: Finite Element Methods (AR17)

S.No.	Question	Knowledge Levels		Program Outcomes
1	Consider the bar shown in figure. An axial load		CO1	PO1, PO2,
	$P = 200*10^3$ N is applied as shown. Using the Penalty			PO5
	approach for handling boundary conditions, do the			

- (a) Determine the Nodal displacements.
- (b) Determine the stress in each material.
- (c) Determine the reaction forces.

Consider the four-bar truss shown in figure. It is a given that $E=29.5*10^6$ psi and $A_e=1$ in.² for all elements. Complete the following:


K4

CO₂

PO1, PO2, PO3, PO5

- (a) Determine the elements stiffness matrix for each element.
- (b) Assemble the structural stiffness matrix K for the entire truss.
- (c) Using the elimination approach, solve for the nodal displacement.
- (d) Calculate the reaction Forces.

ADITYA ENGINEERING COLLEGE
SURAMPALEM - 533 437

Roll. No

: 18A91A03A4

Name of the Student: TADI RAJKUMAR

Year/Sem/Sec

: IV / I / B

Signature of the faculty

ADITYA ENGINEERING COLLEGE.
SURAMPALEM - 533 437