1. IN LONDON: M.K.GANDHI
OBJECTIVE: To apprise the learner how Gandhi spent a period of three years in London as a student.
OUTCOME: The learner will understand how Gandhi grew in introspection and maturity.

2. THE KNOWLEDGE SOCIETY - APJ KALAM
OBJECTIVE: To make the learners rediscover India as a land of Knowledge.
OUTCOME: The learners will achieve a higher quality of life, strength and sovereignty of a developed nation.

3. THE SCIENTIFIC POINT OF VIEW - J.B.S. HALDANE
OBJECTIVE: This essay discusses how scientific point of view seeks to arrive at the truth without being biased by emotion.
OUTCOME: This develops in the student the scientific attitude to solve many problems which we find difficult to tackle.

4. PRINCIPLES OF GOOD WRITING:
OBJECTIVE: To inform the learners how to write clearly and logically.
OUTCOME: The learner will be able to think clearly and logically and write clearly and logically.

5. MAN’S PERIL
OBJECTIVE: To inform the learner that all men are in peril.
OUTCOME: The learner will understand that all men can come together and avert the peril.

6. THE DYING SUN—SIR JAMES JEANS
OBJECTIVE: This excerpt from the book “The Mysterious Universe” presents the mysterious nature of the Universe and the stars which present numerous problems to the scientific mind. Sir James Jeans uses a poetic approach to discuss the scientific phenomena.
OUTCOME: This provides the students to think about the scientific phenomena from a different angle and also exposes the readers to poetic expressions.

7. LUCK—MARK TWAIN
OBJECTIVE: This is a short story about a man’s public image and his true nature. The theme of the story is that luck can be a factor of life, so that even if one is incompetent but lucky, one can still succeed.
OUTCOME: The story is humorous in that it contains a lot of irony. Thus this develops in the learner understand humourous texts and use of words for irony.

Text Book: ‘English Essentials’ by Ravindra Publications
NON-DETAILED TEXT:

(From Modern Trailblazers of Orient Blackswan)
(Common single Text book for two semesters)
(Semester I (1 to 4 lessons)/ Semester II (5 to 8 lessons)

1. G.D.Naidu
 OBJECTIVE: To inspire the learners by G.D.Naidu’s example of inventions and contributions.
 OUTCOME: The learner will be in a position to emulate G.D.Naidu and take to practical applications.

2. G.R.Gopinath
 OBJECTIVE: To inspire the learners by his example of inventions.
 OUTCOME: Like G.R.Gopinath, the learners will be able to achieve much at a low cost and help the common man.

3. Sudhamurthy
 OBJECTIVE: To inspire the learners by the unique interests and contributions of Sudha Murthy.
 OUTCOME: The learner will take interest in multiple fields of knowledge and make life worthwhile through social service.

4. Vijay Bhatkar
 OBJECTIVE: To inspire the learner by his work and studies in different fields of engineering and science.
 OUTCOME: The learner will emulate him and produce memorable things.

I Year – I SEMESTER

MATHEMATICS – I (DIFFERENTIAL EQUATIONS)

UNIT I: Differential equations of first order and first degree:
Linear-Bernoulli-Exact-Reducible to exact.
Subject Category
ABET Learning Objectives a d e
ABET internal assessments 1 2 6
JNTUK External Evaluation A B E

UNIT II: Linear differential equations of higher order:
Non-homogeneous equations of higher order with constant coefficients with RHS term of the type e^{ax}, \sin ax, \cos ax, polynomials in x, e^{ax} V(x), xV(x).
Applications: LCR circuit, Simple Harmonic motion
Subject Category
ABET Learning Objectives a d e
ABET internal assessments 1 2 6
JNTUK External Evaluation A B E

UNIT III Laplace transforms:
Laplace transforms of standard functions-Shifting Theorems, Transforms of derivatives and integrals – Unit step function –Dirac’s delta function- Inverse Laplace transforms– Convolution theorem (without proof).
Subject Category
ABET Learning Objectives a e
ABET internal assessments 1 2 6
JNTUK External Evaluation A B E

UNIT IV Partial differentiation:
Introduction- Total derivative-Chain rule-Generalized Mean Value theorem for single variable (without proof)-Taylors and Mc Laurent’s series for two variables– Functional dependence-Jacobian.
Applications: Maxima and Minima of functions of two variables with constraints and without constraints.
Subject Category
ABET Learning Objectives a c e
ABET internal assessments 1 2 6
JNTUK External Evaluation A B E

UNIT V First order Partial differential equations:
Formation of partial differential equations by elimination of arbitrary constants and arbitrary functions –solutions of first order linear (Lagrange) equation and nonlinear (standard type) equations
Subject Category
ABET Learning Objectives a e
UNIT VI Higher order Partial differential equations:
Solutions of Linear Partial differential equations with constant coefficients- Method of separation of Variables
Applications: One- dimensional Wave, Heat equations - two-dimensional Laplace Equation.

Subject Category
ABET Learning Objectives a e
ABET internal assessments 1 2 6
JNTUK External Evaluation B E

Books:
2. ERWIN KREYSZIG, Advanced Engineering Mathematics, 9th Edition, Wiley-India
3. GREENBERG, Advanced Engineering Mathematics, 2nd edition, Pearson edn
4. DEAN G. DUFFY, Advanced engineering mathematics with MATLAB, CRC Press

<table>
<thead>
<tr>
<th>Subject Category</th>
<th>ABET Learning Objectives</th>
<th>ABET Internal Assessments</th>
<th>JNTUK External Evaluation</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory Design</td>
<td>a) Apply knowledge of math, science, & engineering</td>
<td>1. Objective tests</td>
<td>a. Questions should have:</td>
<td></td>
</tr>
<tr>
<td>Analysis</td>
<td>b) Design & conduct experiments, analyze & interpret data</td>
<td>2. Essay questions tests</td>
<td>b. Definitions, Principle of operation or philosophy of concept.</td>
<td></td>
</tr>
<tr>
<td>Algorithms</td>
<td>c) Design a system/process to meet desired needs within economic, social, political, ethical, health/safety, manufacturability, & sustainability constraints</td>
<td>3. Peer tutoring based</td>
<td>c. Mathematical treatment, derivations, analysis, synthesis, numerical problems with inference.</td>
<td></td>
</tr>
<tr>
<td>Drawing</td>
<td>d) Function on multidisciplinary teams</td>
<td>4. Simulation based</td>
<td>d. Design oriented problems</td>
<td></td>
</tr>
<tr>
<td>Others</td>
<td>e) Identify, formulate, & solve engineering problems</td>
<td>5. Design oriented</td>
<td>e. Trouble shooting type of questions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>f) Understand professional & ethical responsibilities</td>
<td>6. Problem based</td>
<td>f. Applications related questions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>g) Communicate effectively</td>
<td>7. Experiential (project based) based</td>
<td>g. Brain storming questions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>h) Understand impact of engineering solutions in global, economic, environmental, & societal context</td>
<td>8. Lab work or field work based</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>i) Recognize need for & be able to engage in lifelong learning</td>
<td>9. Presentation based</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>j) Know contemporary issues</td>
<td>10. Case Studies based</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>k) Use techniques, skills, modern tools for engineering practices</td>
<td>11. Role-play based</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>12. Portfolio based</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
UNIT-1: WATER TECHNOLOGY

Objectives: For prospective engineers knowledge about water used in industries (boilers etc.) and for drinking purposes is useful; hence chemistry of hard water, boiler troubles and modern methods of softening hard water is introduced.

UNIT-2: ELECTROCHEMISTRY

Objectives: Knowledge of galvanic cells, electrode potentials, concentration cells is necessary for engineers to understand corrosion problem and its control; also this knowledge helps in understanding modern bio-sensors, fuel cells and improve them.

UNIT-3: CORROSION

Objectives: The problems associated with corrosion are well known and the engineers must be aware of these problems and also how to counter them.

UNIT-4: HIGH POLYMERS

Objectives: Plastics are materials used very widely in engineering materials. An understanding of properties particularly physical and mechanical properties of polymers/plastics/elastomers helps in selecting suitable materials for different purpose.

UNIT-5: FUELS

Objectives: A board understanding of the more important fuels employed on a large scale is necessary for all engineer to understand energy-related problems and solve them.
UNIT-6 : CHEMISTRY OF ADVANCED MATERIALS

Objectives : With the knowledge available now, future engineers should know at least some of the advanced materials that are becoming available. Hence some of them are introduced here.

STANDARD BOOKS

REFERENCES
4. B.Viswanathan and M.Aulice Scibioh (2009), Fuel Cells, Principals and applications
ENIGINEERING MECHANICS

Objectives: The students completing this course are expected to understand the concepts of forces and its resolution in different planes, resultant of force system, Forces acting on a body, their free body diagrams using graphical methods. They are required to understand the concepts of centre of gravity and moments of inertia and their application, Analysis of frames and trusses, different types of motion, friction and application of work-energy method.

UNIT – I
Objectives: The students are to be exposed to the concepts of force and friction, direction and its application.

UNIT II
Objectives: The students are to be exposed to application of free body diagrams. Solution to problems using graphical methods and law of triangle of forces.

UNIT – III
Objectives: The students are to be exposed to concepts of centre of gravity.
Centroid: Centroids of simple figures (from basic principles) – Centroids of Composite Figures
Centre of Gravity: Centre of gravity of simple body (from basis principles), centre of gravity of composite bodies, pappus theorem.

UNIT IV
Objective: The students are to be exposed to concepts of moment of inertia and polar moment of inertia including transfer methods and their applications.
Area moments of Inertia: Definition – Polar Moment of Inertia, Transfer Theorem, Moments of Inertia of Composite Figures, Products of Inertia, Transfer Formula for Product of Inertia. Mass Moment of Inertia: Moment of Inertia of Masses, Transfer Formula for Mass Moments of Inertia, mass moment of inertia of composite bodies.

UNIT – V
Objectives: The students are to be exposed to motion in straight line and in curvilinear paths, its velocity and acceleration computation and methods of representing plane motion.

Contd...
UNIT – VI
Objectives: The students are to be exposed to concepts of work, energy and particle motion

TEXT BOOKS:

REFERENCES:

LEARNING ASSESSMENT
Distribution and weightage of Marks for all theory subjects:

The Assessment of a student’s performance shall be evaluated as suggested below:

a. For theory subjects the distribution shall be 30 marks for Internal Evaluation And 70 marks for the End - Examinations.

b. Out of 30 internal marks, the division shall be as shown below:
 ▪ 15 marks shall be assigned for subjective examination
 ▪ 5 marks for objective “On Line” examination
 ▪ 5 marks for tutorials
 ▪ 5 marks for Assignment

c. For theory subjects, during the semester there shall be 2 descriptive tests. Each test shall consist of 90 minutes duration for 30 marks . Each descriptive question paper shall contain 3 questions for 30 marks. The descriptive examination marks for 30 shall be scaled for 15. The best of the two tests shall be taken for internal assessment. The first test is to be conducted from 1-3 units and second test in 4-6 units of each semester.

d. For theory subjects, during the semester there shall be 2 objective online tests. Each test shall consist of 20 minutes duration for 20 marks . Each Objective question paper shall contain 20 objective type questions for 20 marks. The Objective examination marks for 20 shall be scaled for 5. The best of the two tests shall be taken for internal assessment. The first test is to be conducted from 1-3 units and second test in 4-6 units of each semester.
e. For theory subjects, during the semester there shall be a minimum of 10 tutorial classes conducted covering the complete syllabus of each subject. There shall be continuous evaluation of each tutorial and the final evaluation shall be for 5 marks. A record of conduction and evaluation of the tutorials for each subject shall be maintained.

f. For theory subjects, during the semester there shall be a minimum of 6 assignments covering the complete syllabus of each subject. There shall be continuous evaluation of each assignment and the final evaluation shall be for 5 marks. A record of conduction and evaluation of the assignments for each subject shall be maintained.

g. For theory subjects, there shall be an end semester examination for 70 marks. The question paper shall contain 6 questions, out of which the first question shall be compulsory. All the questions, including the compulsory question, shall contain the entire syllabus. The student shall answer 4 questions, including the compulsory question. The compulsory question shall carry 22 marks and the remaining questions shall carry 16 marks each. Each question may consist of sub divisions as per convenience.
COMPUTER PROGRAMMING

Objectives: Formulating algorithmic solutions to problems and implementing algorithms in C

UNIT I:
Unit objective: Notion of Operation of a CPU, Notion of an algorithm and computational procedure, editing and executing programs in Linux
Introduction: Computer systems, Hardware and Software Concepts,
Problem Solving: Algorithm / Pseudo code, flowchart, program development steps, computer languages: machine, symbolic and highlevel languages, Creating and Running Programs: Writing, Editing(vi/emacs editor), Compiling(gcc), Linking and Executing in under Linux.

BASICS OF C: Structure of a c program, identifiers, basic data types and sizes. Constants, Variables, Arithmetic , relational and logical operators, increment and decrement operators, conditional operator, assignment operator, expressions, type conversions, Conditional Expressions, precedence and order of evaluation, Sample Programs.

UNIT II:
Unit objective: understanding branching, iteration and data representation using arrays
SELECTION – MAKING DECISION: TWO WAY SELECTION: if-else, null else, nested if, examples, Multi-way selection: switch, else-if, examples.
ITERATIVE: loops- while, do-while and for statements , break, continue, initialization and updating, event and counter controlled loops, Looping applications: Summation, powers, smallest and largest.
ARRAYS: Arrays- concepts, declaration, definition, accessing elements, storing elements, Strings and String Manipulations, 1-D arrays, 2-D arrays and character arrays, string manipulations, Multidimensional arrays, array applications: Matrix operations, checking the symmetricity of a Matrix.

UNIT III:
Objective: Modular programming and recursive solution formulation
FUNCTIONS- MODULAR PROGRAMMING: functions, basics, parameter passing, storage classes extern, auto, register, static, scope rules, block structure, user defined functions, standard library functions, recursive functions, Recursive solutions for fibonacci series, towers of Hanoi, header files, C Preprocessor, example c programs, Passing 1-D arrays, 2-D arrays to functions.

UNIT IV:
Objective: Understanding pointers and dynamic memory allocation
POINTERS: pointers- concepts, initialization of pointer variables, pointers and function arguments, passing by address- dangling memory, address arithmetic, character pointers and functions, pointers to pointers, pointers and multi-dimensional arrays, dynamic memory management functions, command line arguments

Contd…
UNIT V:
Objective: Understanding miscellaneous aspects of C
ENUMERATED, STRUCTURE AND UNION TYPES: Derived types- structures-declaration, definition and initialization of structures, accessing structures, nested structures, arrays of structures, structures and functions, pointers to structures, self referential structures, unions, typedef, bit-fields, program applications
BIT-WISE OPERATORS: logical, shift, rotation, masks.

UNIT VI:
Objective: Comprehension of file operations
FILEHANDLING: Input and output- concept of a file, text files and binary files, Formatted I/O, File I/O operations, example programs

Text Books:
1. Problem Solving and Program Design in C, Hanly, Koffman, 7th ed, PERSON
3. Programming in C, A practical approach Ajay Mittal PEARSON
4. The C programming Language by Dennis Richie and Brian Kernighan

Reference Books and web links:
2. Programming with C, Bichkar, Universities Press
3. Programming in C, Reema Thareja, OXFORD
4. C by Example, Noel Kalicharan, Cambridge
I Year – I SEMESTER

ENVIRONMENTAL STUDIES

Course Learning Objectives:

The objectives of the course is to impart

1. Overall understanding of the natural resources
2. Basic understanding of the ecosystem and its diversity
3. Acquaintance on various environmental challenges induced due to unplanned anthropogenic activities
4. An understanding of the environmental impact of developmental activities
5. Awareness on the social issues, environmental legislation and global treaties

Course Outcomes:

The student should have knowledge on

1. The natural resources and their importance for the sustenance of the life and recognise the need to conserve the natural resources
2. The concepts of the ecosystem and its function in the environment. The need for protecting the producers and consumers in various ecosystems and their role in the food web
3. The biodiversity of India and the threats to biodiversity, and conservation practices to protect the biodiversity
4. Various attributes of the pollution and their impacts and measures to reduce or control the pollution along with waste management practices
5. Social issues both rural and urban environment and the possible means to combat the challenges
6. The environmental legislations of India and the first global initiatives towards sustainable development.
7. About environmental assessment and the stages involved in EIA and the environmental audit

Syllabus:

UNIT - I

Multidisciplinary nature of Environmental Studies: Definition, Scope and Importance – Sustainability: Stockholm and Rio Summit–Global Environmental Challenges: Global warming
and climate change, acid rains, ozone layer depletion, population growth and explosion, effects. Role of information Technology in Environment and human health.

Ecosystems: Concept of an ecosystem. - Structure and function of an ecosystem. - Producers, consumers and decomposers. - Energy flow in the ecosystem - Ecological succession. - Food chains, food webs and ecological pyramids. - Introduction, types, characteristic features, structure and function of Forest ecosystem, Grassland ecosystem, Desert ecosystem, Aquatic ecosystems.

UNIT - II

Natural Resources: Natural resources and associated problems

Forest resources – Use and over – exploitation, deforestation – Timber extraction – Mining, dams and other effects on forest and tribal people

Water resources – Use and over utilization of surface and ground water – Floods, drought, conflicts over water, dams – benefits and problems

Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources

Food resources: World food problems, changes caused by non-agriculture activities-effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity

Energy resources: Growing energy needs, renewable and non-renewable energy sources use of alternate energy sources.

Land resources: Land as a resource, land degradation, Wasteland reclamation, man induced landslides, soil erosion and desertification. Role of an individual in conservation of natural resources. Equitable use of resources for sustainable lifestyles.

UNIT - III

Biodiversity and its conservation: Definition: genetic, species and ecosystem diversity-classification - Value of biodiversity: consumptive use, productive use, social-Biodiversity at national and local levels. India as a mega-diversity nation - Hot-sports of biodiversity - Threats to biodiversity: habitat loss, man-wildlife conflicts. - Endangered and endemic species of India – Conservation of biodiversity: conservation of biodiversity.

UNIT - IV

Environmental Pollution: Definition, Cause, effects and control measures of Air pollution, Water pollution, Soil pollution, Noise pollution, Nuclear hazards. Role of an individual in prevention of pollution. - Pollution case studies.

Solid Waste Management: Sources, classification, effects and control measures of urban and industrial solid wastes. Consumerism and waste products.
UNIT - V

UNIT - VI

Environmental Management: Impact Assessment and its significance various stages of EIA, preparation of EMP and EIS, Environmental audit. Ecotourism

The student should submit a report individually on any issues related to Environmental Studies course and make a power point presentation.

Text Books:
2. A Textbook of Environmental Studies by Shaashi Chawla, TMH, New Delhi

Reference:
2. Environmental Studies by K.V.S.G. Murali Krishna, VGS Publishers, Vijayawada
4. Environmental Studies by Piyush Malaviya, Pratibha Singh, Anoop singh: Acme Learning, New Delhi

I Year – I SEMESTER

ENGINEERING CHEMISTRY LABORATORY

List of Experiments

1. Introduction to chemistry laboratory – Molarity, Normality, Primary, Secondary standard solutions, Volumetric titrations, Quantitative analysis, Quantitative analysis etc.,
2. Trial experiment – Estimation of HCl using standard Na₂CO₃ solutions
3. Estimation of KMnO₄ using standard Oxalic acid solution.
4. Estimation of Ferric iron using standard K₂Cr₂O₇ solution.
5. Estimation of Copper using standard K₂Cr₂O₇ solution.
7. Estimation of Copper using standard EDTA solution.
8. Estimation of Copper using Colorimeter
10. Conductometric Titrations between strong acid and strong base
11. Conductometric Titrations between strong acid and Weak base
12. Potentiometric Titrations between strong acid and strong base
13. Potentiometric Titrations between strong acid and Weak base
14. Estimation of Zinc using standard potassium ferrocyanide solution
15. Estimation of Vitamin – C

STANDARD BOOKS

ENGLISH – COMMUNICATION SKILLS LAB – I

Suggested Lab Manuals:

OBJECTIVE: To impart to the learner the skills of grammar as well as communication through listening, speaking, reading, and writing including soft, that is life skills.

BASIC COMMUNICATION SKILLS

UNIT 1
A. Greeting and Introductions
B. Pure Vowels

UNIT 2
A. Asking for information and Requests
B. Diphthongs

UNIT 3
A. Invitations
B. Consonants

UNIT 4
A. Commands and Instructions
B. Accent and Rhythm

UNIT 5
A. Suggestions and Opinions
B. Intonation

Text Book:

‘Strengthen your Communication Skills’ Part-A by Maruthi Publications

Reference Books:

1. INFOTECH English (Maruthi Publications)
2. Personality Development and Soft Skills (Oxford University Press, New Delhi)
C PROGRAMMING LAB

Exercise 1
a) Write a C Program to calculate the area of triangle using the formula
 \[
 \text{area} = \sqrt{s(s-a)(s-b)(s-c)}
 \]
 where \(s= \frac{(a+b+c)}{2}\)

b) Write a C program to find the largest of three numbers using ternary operator.

c) Write a C Program to swap two numbers without using a temporary variable.

Exercise 2
a) 2’s complement of a number is obtained by scanning it from right to left and complementing
 all the bits after the first appearance of a 1. Thus 2’s complement of 11100 is 00100. Write a C
 program to find the 2’s complement of a binary number.

b) Write a C program to find the roots of a quadratic equation.

c) Write a C program, which takes two integer operands and one operator form the user,
 performs the operation and then prints the result. (Consider the operators +,-,*, /, % and use
 Switch Statement)

Exercise 3
a) Write a C program to find the sum of individual digits of a positive integer and find the
 reverse of the given number.

b) A Fibonacci sequence is defined as follows: the first and second terms in the sequence are 0
 and 1. Subsequent terms are found by adding the preceding two terms in the sequence. Write a C
 program to generate the first n terms of the sequenceUse the summing series method to compute
 the value of \(\sin(x), \cos(x)\) and \(e^x\).

c) Write a C program to generate all the prime numbers between 1 and n, where n is a value
 supplied by the user.

Exercise 4
a) Write a C Program to print the multiplication table of a given number n up to a given value,
 where n is entered by the user.

b) Write a C Program to enter a decimal number, and calculate and display the binary equivalent
 of that number.

c) Write a C Program to check whether the given number is Armstrong number or not.

Exercise 5
a) Write a C program to interchange the largest and smallest numbers in the array.

b) Write a C program to implement a liner search.

c) Write a C program to implement binary search

Exercise 6
a) Write a C program to implement sorting of an array of elements.

b) Write a C program to input two m x n matrices, check the compatibility and perform addition
 and multiplication of them

Exercise 7
Write a C program that uses functions to perform the following operations:
 i. To insert a sub-string in to given main string from a given position.
 ii. To delete n Characters from a given position in a given string.
iii. To replace a character of string either from beginning or ending or at a specified location

Exercise 8
Write a C program that uses functions to perform the following operations using Structure:
- i) Reading a complex number
- ii) Writing a complex number
- iii) Addition of two complex numbers
- iv) Multiplication of two complex numbers

Exercise 9
a) Write C Programs for the following string operations without using the built in functions
 - to concatenate two strings
 - to append a string to another string
 - to compare two strings

Exercise 10
a) Write C Programs for the following string operations without using the built in functions
 - to find the length of a string
 - to find whether a given string is palindrome or not

Exercise 11
a) Write a C functions to find both the largest and smallest number of an array of integers.
b) Write C programs illustrating call by value and call by reference concepts.

Exercise 12
a) Write C programs that use both recursive and non-recursive functions for the following
 - i) To find the factorial of a given integer.
 - ii) To find the GCD (greatest common divisor) of two given integers.
 - iii) To find Fibonacci sequence

Exercise 13
a) Write a C program to reverse a string using pointers
b) Write a C Program to compare two arrays using pointers

Exercise 14
a) Write a C program consisting of Pointer based function to exchange value of two integers using passing by address.
b) Write a C program to swap two numbers using pointers

Exercise 15
Examples which explores the use of structures, union and other user defined variables

Exercise 16
a) Write a C program which copies one file to another.
b) Write a C program to count the number of characters and number of lines in a file.
c) Write a C Program to merge two files into a third file. The names of the files must be entered using command line arguments.
ENGLISH –II

DETAILED TEXT-II : Sure Outcomes: English for Engineers and Technologists

Recommended Topics:
1. TECHNOLOGY WITH A HUMAN FACE
 OBJECTIVE: To make the learner understand how modern life has been shaped by technology.
 OUTCOME: The proposed technology is people’s technology. It serves the human person instead of making him the servant of machines.

2. CLIMATE CHANGE AND HUMAN STRATEGY
 OBJECTIVE: To make the learner understand how the unequal heating of earth’s surface by the Sun, an atmospheric circulation pattern is developed and maintained.
 OUTCOME: The learner’s understand that climate must be preserved.

3. EMERGING TECHNOLOGIES
 OBJECTIVE: To introduce the technologies of the 20th century and 21st centuries to the learners.
 OUTCOME: The learner will adopt the applications of modern technologies such as nanotechnology.

4. WATER - THE ELIXIR OF LIFE
 OBJECTIVE: To inform the learner of the various advantages and characteristics of water.
 OUTCOME: The learners will understand that water is the elixir of life.

5. THE SECRET OF WORK
 OBJECTIVE: In this lesson, Swami Vivekananda highlights the importance of work for any development.
 OUTCOME: The students will learn to work hard with devotion and dedication.

6. WORK BRINGS SOLACE
 OBJECTIVE: In this lesson Abdul Kalam highlights the advantage of work.
 OUTCOME: The students will understand the advantages of work. They will overcome their personal problems and address themselves to national and other problems.

NON-DETAILED TEXT:

(From Modern Trailblazers of Orient Blackswan)
(Common single Text book for two semesters)

(Semester I (1 to 4 lessons)/ Semester II (5 to 8 lessons))

5. J.C. Bose
 OBJECTIVE: To apprise of J.C. Bose’s original contributions.
 OUTCOME: The learner will be inspired by Bose’s achievements so that he may start his own original work.

6. Homi Jehangir Bhaba
 OBJECTIVE: To show Bhabha as the originator of nuclear experiments in India.
OUTCOME: The learner will be inspired by Bhabha’s achievements so as to make his own experiments.

7. Vikram Sarabhai

OBJECTIVE: To inform the learner of the pioneering experiments conducted by Sarabhai in nuclear energy and relevance of space programmes.

OUTCOME: The learner will realize that development is impossible without scientific research.

OBJECTIVE: To expose the reader to the pleasure of the humorous story

OUTCOME: The learner will be in a position to appreciate the art of writing a short story and try his hand at it.

UNIT I Linear systems of equations:
Application: Finding the current in a electrical circuit.
Subject Category
ABET Learning Objectives a e k
ABET internal assessments 1 2 6 4
JNTUK External Evaluation A B E

UNIT II Eigen values - Eigen vectors and Quadratic forms:
Application: Free vibration of a two-mass system.
Subject Category
ABET Learning Objectives a d e k
ABET internal assessments 1 2 4 6
JNTUK External Evaluation A B E

UNIT III Multiple integrals:
Review concepts of Curve tracing (Cartesian - Polar and Parametric curves)- Applications of Integration to Lengths, Volumes and Surface areas of revolution in Cartesian and Polar Coordinates.
Multiple integrals - double and triple integrals – change of variables – Change of order of Integration
Application: Moments of inertia
Subject Category
ABET Learning Objectives a e d
ABET internal assessments 1 2 6
JNTUK External Evaluation A B E

UNIT IV Special functions:
Beta and Gamma functions- Properties - Relation between Beta and Gamma functions- Evaluation of improper integrals
Application: Evaluation of integrals
Subject Category
ABET Learning Objectives a e
ABET internal assessments 1 2 6
JNTUK External Evaluation A B E

UNIT V Vector Differentiation:
Gradient- Divergence- Curl - Laplacian and second order operators -Vector identities
Application: Equation of continuity, potential surfaces
Subject Category
ABET Learning Objectives a e
UNIT VI Vector Integration:
application: work done, Force

ABET Learning Objectives a e
ABET internal assessments 1 2 6
JNTUK External Evaluation A B E

BOOKS:
2. B.V. RAMANA, Higher Engineering Mathematics, Tata McGrawhill
4. PETER O’NEIL, Advanced Engineering Mathematics, Cengage Learning
5. D.W. JORDAN AND T. SMITH, Mathematical Techniques, Oxford University Press

<table>
<thead>
<tr>
<th>Subject Category</th>
<th>ABET Learning Objectives</th>
<th>ABET Internal Assessments</th>
<th>JNTUK External Evaluation</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory</td>
<td>l) Apply knowledge of math, science, & engineering</td>
<td>13. Objective tests</td>
<td>h. Questions should have:</td>
<td></td>
</tr>
<tr>
<td>Design</td>
<td>m) Design & conduct experiments, analyze & interpret data</td>
<td>14. Essay questions tests</td>
<td>i. Definitions, Principle of operation or philosophy of concept.</td>
<td></td>
</tr>
<tr>
<td>Analysis</td>
<td>n) Design a system/process to meet desired needs within economic, social, political, ethical, health/safety, manufacturability, & sustainability constraints</td>
<td>15. Peer tutoring based</td>
<td>j. Mathematical treatment, derivations, analysis, synthesis, numerical problems with inference.</td>
<td></td>
</tr>
<tr>
<td>Algorithms</td>
<td>o) Function on multidisciplinary teams</td>
<td>16. Simulation based</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drawing</td>
<td>p) Identify, formulate, & solve engineering problems</td>
<td>17. Design oriented</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Others</td>
<td>q) Understand professional & ethical responsibilities</td>
<td>18. Problem based</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>r) Communicate effectively</td>
<td>19. Experiential (project based) based</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>s) Understand impact of engineering solutions in global, economic, environmental, & societal context</td>
<td>20. Lab work or field work based</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>t) Recognize need for & be able to engage in lifelong learning</td>
<td>21. Presentation based</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>u) Know contemporary issues</td>
<td>22. Case Studies based</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>v) Use techniques, skills, modern tools for engineering practices</td>
<td>23. Role-play based</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>24. Portfolio based</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theory</th>
<th>ABET Learning Objectives</th>
<th>ABET Internal Assessments</th>
<th>JNTUK External Evaluation</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design</td>
<td>l) Apply knowledge of math, science, & engineering</td>
<td>13. Objective tests</td>
<td>h. Questions should have:</td>
<td></td>
</tr>
<tr>
<td>Analysis</td>
<td>m) Design & conduct experiments, analyze & interpret data</td>
<td>14. Essay questions tests</td>
<td>i. Definitions, Principle of operation or philosophy of concept.</td>
<td></td>
</tr>
<tr>
<td>Algorithms</td>
<td>n) Design a system/process to meet desired needs within economic, social, political, ethical, health/safety, manufacturability, & sustainability constraints</td>
<td>15. Peer tutoring based</td>
<td>j. Mathematical treatment, derivations, analysis, synthesis, numerical problems with inference.</td>
<td></td>
</tr>
<tr>
<td>Drawing</td>
<td>o) Function on multidisciplinary teams</td>
<td>16. Simulation based</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Others</td>
<td>p) Identify, formulate, & solve engineering problems</td>
<td>17. Design oriented</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>q) Understand professional & ethical responsibilities</td>
<td>18. Problem based</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>r) Communicate effectively</td>
<td>19. Experiential (project based) based</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>s) Understand impact of engineering solutions in global, economic, environmental, & societal context</td>
<td>20. Lab work or field work based</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>t) Recognize need for & be able to engage in lifelong learning</td>
<td>21. Presentation based</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>u) Know contemporary issues</td>
<td>22. Case Studies based</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>v) Use techniques, skills, modern tools for engineering practices</td>
<td>23. Role-play based</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>24. Portfolio based</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
I Year – II SEMESTER

MATHEMATICS – III (MATHEMATICAL METHODS)
Numerical Methods and Integral Transforms

UNIT I Solution of Algebraic and Transcendental Equations:
Subject Category
ABET Learning Objectives a e k
ABET internal assessments 1 2 4 6
JNTUK External Evaluation A B E

UNIT II Interpolation:
Introduction- Errors in Polynomial Interpolation – Finite differences- Forward Differences-Backward differences –Central differences – Symbolic relations and separation of symbols-Differences of a polynomial-Newton’s formulae for interpolation – Interpolation with unevenly spaced points - Lagrange’s Interpolation formula
Subject Category
ABET Learning Objectives a e
ABET internal assessments 1 2 4 6
JNTUK External Evaluation A B E

UNIT III Numerical solution of Ordinary Differential equations:
Solution by Taylor’s series-Picard’s Method of successive Approximations-Euler’s Method-Runge-Kutta Methods
Subject Category
ABET Learning Objectives a e
ABET internal assessments 1 2 4 6
JNTUK External Evaluation A B E

UNIT IV Fourier Series:
Introduction- Determination of Fourier coefficients – even and odd functions –change of interval– Half-range sine and cosine series
application: Amplitude, spectrum of a periodic function
Subject Category
ABET Learning Objectives a e d
ABET internal assessments 1 2 6
JNTUK External Evaluation A B E

UNIT V Fourier Transforms:
Fourier integral theorem (only statement) – Fourier sine and cosine integrals - sine and cosine transforms – properties – inverse transforms – Finite Fourier transforms
Subject Category
ABET Learning Objectives a d e k
ABET internal assessments 1 2 6
JNTUK External Evaluation A B E

UNIT VI Z-transform:

Subject Category
ABET Learning Objectives a b e k
ABET internal assessments 1 2 6
JNTUK External Evaluation A B E

BOOKS:
2. DEAN G. DUFFY, Advanced Engineering Mathematics with MATLAB, CRC Press
3. V.RAVINDRANATH and P. VIJAYALAXMI, Mathematical Methods, Himalaya Publishing House

<table>
<thead>
<tr>
<th>Subject Category</th>
<th>ABET Learning Objectives</th>
<th>ABET Internal Assessments</th>
<th>JNTUK External Evaluation</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory Design</td>
<td>w) Apply knowledge of math, science, & engineering</td>
<td>25. Objective tests</td>
<td>o. Questions should have: p. Definitions, Principle of operation or philosophy of concept.</td>
<td></td>
</tr>
<tr>
<td>Algorithms</td>
<td>y) Design a system/process to meet desired needs within economic, social, political, ethical, health/safety, manufacturability, & sustainability constraints</td>
<td>27. Peer tutoring based</td>
<td>r. Design oriented problems</td>
<td></td>
</tr>
<tr>
<td>Drawing</td>
<td>z) Function on multidisciplinary teams</td>
<td>28. Simulation based</td>
<td>s. Trouble shooting type of questions</td>
<td></td>
</tr>
<tr>
<td>Others</td>
<td>aa) Identify, formulate, & solve engineering problems</td>
<td>29. Design oriented</td>
<td>t. Applications related questions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>bb) Understand professional & ethical responsibilities</td>
<td>30. Problem based</td>
<td>u. Brain storming questions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>cc) Communicate effectively</td>
<td>31. Experiential (project based) based</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>dd) Understand impact of engineering solutions in global, economic, environmental, & societal context</td>
<td>32. Lab work or field work based</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ee) Recognize need for & be able to engage in lifelong learning</td>
<td>33. Presentation based</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ff) Know contemporary issues</td>
<td>34. Case Studies based</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>gg) Use techniques, skills, modern tools for engineering practices</td>
<td>35. Role-play based</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>hh)</td>
<td>36. Portfolio based</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ENGINEERING PHYSICS

UNIT-I
PHYSICAL OPTICS FOR INSTRUMENTS
“Objective Designing an instrument and enhancing the resolution for its operation would be effect as achieved through study of applicational aspects of physical Optics”

UNIT-II
COHERENT OPTICS – COMMUNICATIONS AND STRUCTURE OF MATERIALS
Objectives while lasers are trusted Non-linear coherent sources establishing for the fitness of instrumentation, establishing a structure property relationship for materials requires allotment of an equivalent footing in convening the physics knowledge base.

X-RAY DIFFRACTION TECHNIQUES: Directions and planes in crystals – Miller indices – Separation between successive (h k l) planes – Bragg’s law.

UNIT-III
MAGNETIC, ELECTRIC FIELD RESPONSE OF MATERIALS & SUPERCONDUCTIVITY
“Objective many of the Electrical or Electronic gadgets are designed basing on the response of naturally abundant and artificially made materials, while their response to E- or H- fields controls their performance.

MAGNETIC PROPERTIES: Magnetic permeability – Magnetization – Organ or magnetic moment – Classification of Magnetic materials – Dir, para, Ferro, anti fefo and ferri-magnetism – Hysteresis curve.

SUPERCONDUCTIVITY: General properties – Meissner effect – Type I and Type II superconductors – BCS Theory Flux quantization London’s equations – Penetration depth – DC and AC Josephson effects – SQUIDS.

UNIT – IV
ACQUSTICS AND EM – FIELDS:
Objective: The utility and nuances of ever pervading SHM and its consequences would be the first hand-on to as it clearly conveyed through the detailed studies of Acoustics of Buildings, while vectorial concepts of EM fields paves the student to gear – up for a deeper understanding.

ACQUSTICS: Sound absorption, absorption coefficient and its measurements, Reverberations time – Sabine’s formula, Eyring’s formula.
ELECTRO-MAGNETIC FIELDS: Gauss and stokes theorems (qualitative) – Fundamental laws of electromagnetism – Maxwell’s Electromagnetic Equations (Calculus approach).

UNIT – V
QUANTUM MECHANICS FOR ELECTRONIC TRANSPORT
Objective: The discrepancy between classical estimates and laboratory observations of physical properties exhibited by materials would be lifted out through the understanding quantum picture of sub-atomic world dominated by electron and its presence.
QUANTUM MECHANICS: Introduction to matter waves – Schrodinger Time Independent and Time Dependent wave equations – Particle in a box.

UNIT – VI
SEMICONDUCTOR PHYSICS:
Objective: In the wake of ever increasing demand for the space and power the watch word “small is beautiful”, understanding the physics of electronic transport as underlying mechanism for appliances would provide a knowledge base.

TEXT BOOKS
1. Solid state Physics by A.J. Dekker (Mc Millan India Ltd)
3. Engineering Physics by M.R. Srinivasan (New Age international publishers)

REFERENCE BOOKS
1. ‘Introduction to solid state physics’ by Charles Kittle (Willey India Pvt.Ltd)
2. ‘Applied Physics’ by T. Bhimasenkaram (BSP BH Publications)
3. ‘Applied Physics’ by M.Arumugam (Anuradha Agencies)
4. ‘Engineering Physics’ by Palanisamy (Scitech Publishers)
5. ‘Engineering Physics’ by D.K.Bhattacharya (Oxford University press)
6. ‘Engineering Physics’ by Mani Naidu S (Pearson Publications)
7. ‘Engineering Physics’ by Sanjay D Jain and Girish G Sahasrabudhe (University Press)
8. ‘Engineering Physics’ by B.K.Pandey & S. Chaturvedi (Cengage Learning)
Professional Ethics and Human Values

UNIT I: Human Values:

UNIT II: Engineering Ethics:

UNIT III: Engineering as Social Experimentation:

UNIT IV: Engineers’ Responsibility for Safety and Risk:

UNIT V: Engineers’ Responsibilities and Rights:

UNIT VI: Global Issues:

Text Books:

2. “Professional Ethics and Morals” by Prof.A.R.Aryasri, Dharanikota Suyodhana-Maruthi Publications

3. “Professional Ethics and Human Values” by A.Alavudeen, R.Kalil Rahman and M.Jayakumaran- Laxmi Publications

4. “Professional Ethics and Human Values” by Prof.D.R.Kiran-

5. “Indian Culture, Values and Professional Ethics” by PSR Murthy-BS Publication

ENGININEERING DRAWING

Objective: Engineering drawing being the principle method of communication for engineers, the objective to introduce the students, the techniques of constructing the various types of polygons, curves and scales. The objective is also to visualize and represent the 3D objects in 2D planes with proper dimensioning, scaling etc.

UNIT I
Objective: The objective is to introduce the use and the application of drawing instruments and to make the students construct the polygons, curves and various types of scales. The student will be able to understand the need to enlarge or reduce the size of objects in representing them.
Polygons, Construction of regular polygons using given length of a side; Ellipse, arcs of circles and Oblong methods; Scales – Vernier and Diagonal scales.

UNIT II
Objective: The objective is to introduce orthographic projections and to project the points and lines parallel to one plane and inclined to other.
Introduction to orthographic projections; projections of points; projections of straight lines parallel to both the planes; projections of straight lines – parallel to one plane and inclined to the other plane.

UNIT III
Objective: The objective is to make the students draw the projections of the lines inclined to both the planes.
Projections of straight lines inclined to both the planes, determination of true lengths, angle of inclinations and traces.

UNIT IV
Objective: The objective is to make the students draw the projections of the plane inclined to both the planes.
Projections of planes: regular planes perpendicular/parallel to one plane and inclined to the other reference plane; inclined to both the reference planes.

UNIT V
Objective: The objective is to make the students draw the projections of the various types of solids in different positions inclined to one of the planes.
Projections of Solids – Prisms, Pyramids, Cones and Cylinders with the axis inclined to one of the planes.

UNIT VI
Objective: The objective is to represent the object in 3D view through isometric views. The student will be able to represent and convert the isometric view to orthographic view and vice versa.
Conversion of isometric views to orthographic views; Conversion of orthographic views to isometric views.

TEXT BOOKS:
1. Engineering Drawing by N.D. Butt, Chariot Publications

REFERENCE BOOKS:
3. Engineering Drawing + AutoCad – K Venugopal, V. Prabhu Raja, New Age

LEARNING ASSESSMENT

Distribution and weightage of Marks for all Design / Drawing subjects:

The Assessment of a student’s performance shall be evaluated as suggested below:

For the subject having design and / or drawing, (such as Engineering Drawing, Machine Drawing), the distribution shall be 30 marks for internal evaluation and 70 marks for end semester examination. There shall be two internal tests in a Semester and the best of the two shall be considered for the award of marks for internal tests.

1. Out of 30 internal marks, the marks shall be awarded as follows:
 - Day to day work 20
 - 10 marks to be awarded by conducting an internal mid examination.

2. The external examination shall be conducted for 70 marks.
 a) For subject like engineering drawing the pattern of external examination shall be similar to theory examination.
 b) For subjects like Machine Drawing, external examination pattern shall be as mentioned below:
 - Part-I: Should contain 3 questions out of which 2 must be answered for 20 marks.
 - Part-II: Assembly drawing should contain 50 marks which is compulsory.
I Year – II SEMESTER

ENGLISH – COMMUNICATION SKILLS LAB – II

Suggested Lab Manuals:

OBJECTIVE: To impart to the learner the skills of grammar as well as communication through listening, speaking, reading, and writing including soft, that is life skills.

ADVANCED COMMUNICATION SKILLS

UNIT 6 Body language
UNIT 7 Dialogues
UNIT 8 Interviews and Telephonic Interviews
UNIT 9 Group Discussions
UNIT 10 Presentation Skills
UNIT 11 Debates

Text Book:

‘Strengthen your Communication Skills’ Part-B by Maruthi Publications

Reference Books:

1. INFOTECH English (Maruthi Publications)
2. Personality Development and Soft Skills (Oxford University Press, New Delhi)
List of Experiments

1. Determination of wavelength of a source-Diffraction Grating-Normal incidence
3. Determination of thickness of a thin object using parallel interference fringes.
4. Determination of Rigidity modulus of a material- Torsional Pendulum.
7. Verification of laws of stretched string – Sonometer.
9. L C R Senes Resonance Circuit
10. Study of I/V Characteristics of Semiconductor diode
11. I/V characteristics of Zener diode
12. Thermistor characteristics – Temperature Coefficient
13. Magnetic field along the axis of a current carrying coil – Stewart and Gee’s apparatus.
15. Hall Effect for semiconductor.

REFERENCE:
1. Engineering Physics Lab Manual by Dr.Y. Aparna & Dr.K. Venkateswarao (V.G.S.Book links)
ENIGINEERING WORKSHOP & IT WORKSHOP

ENIGINEERING WORKSHOP:
Course Objective: To impart hands-on practice on basic engineering trades and skills.
Note: At least two exercises to be done from each trade.

Trade:

Carpentry
1. T-Lap Joint
2. Cross Lap Joint
3. Dovetail Joint
4. Mortise and Tennon Joint

Fitting
1. Vee Fit
2. Square Fit
3. Half Round Fit
4. Dovetail Fit

Black Smithy
1. Round rod to Square
2. S-Hook
3. Round Rod to Flat Ring
4. Round Rod to Square headed bolt

House Wiring
1. Parallel / Series Connection of three bulbs
2. Stair Case wiring
3. Florescent Lamp Fitting
4. Measurement of Earth Resistance

Tin Smithy
1. Taper Tray
2. Square Box without lid
3. Open Scoop
4. Funnel

LEARNING ASSESSMENT

Distribution and weightage of Marks for all Practical Subjects:
The Assessment of a student’s performance shall be evaluated as suggested below:
For practical subjects there shall be continuous evaluation during the semester for 25 internal marks and 50 marks for end semester examination.

1. Out of 25 internal marks, 15 marks shall be awarded as follows:
 - Day to day work 10
 - Record-5 and
 - 10 marks to be awarded by conducting an internal laboratory test

2. The external examination shall be conducted for 50 marks and shall be awarded as follows:
 - Procedure for conducting the experiment – 10 marks
 - Viva-voce – 10 marks
 - Calculation and result – 30 marks
IT WORKSHOP:

Objectives: Enabling the student to understand basic hardware and software tools through practical exposure

PC Hardware:
Identification of basic peripherals, assembling a PC, installation of system software like MS Windows, device drivers. Troubleshooting Hardware and software _ some tips and tricks.

Internet & World Wide Web:
Different ways of hooking the PC on to the internet from home and workplace and effectively usage of the internet, web browsers, email, newsgroups and discussion forums .Awareness of cyber hygiene(protecting the personal computer from getting infected with the viruses), worms and other cyber attacks .

Productivity tools Crafting professional word documents; excel spread sheets, power point presentations and personal web sites using the Microsoft suite of office tools
(Note: Student should be thoroughly exposed to minimum of 12 Tasks)

PC Hardware

Task 1: Identification of the peripherals of a computer.
To prepare a report containing the block diagram of the CPU along with the configuration of each peripheral and its functions. Description of various I/O Devices

Task 2(Optional) : A practice on disassembling the components of a PC and assembling them to back to working condition.

Task 3: Examples of Operating systems- DOS, MS Windows, Installation of MS windows on a PC.

Task 4: Introduction to Memory and Storage Devices , I/O Port, Device Drivers, Assemblers, Compilers, Interpreters , Linkers, Loaders.

Task 5:
Hardware Troubleshooting (Demonstration):
Identification of a problem and fixing a defective PC(improper assembly or defective peripherals).

Software Troubleshooting (Demonstration): Identification of a problem and fixing the PC for any software issues

Internet & Networking Infrastructure

Orientation & Connectivity Boot Camp and web browsing: Students are trained to configure the network settings to connect to the Internet. They are trained to demonstrate the same through web browsing (including all tool bar options) and email access.

Task 7: Search Engines & Netiquette:
Students are enabled to use search engines for simple search, academic search and any other context based search (Bing, Google etc). Students are acquainted to the principles of microblogging, wiki, collaboration using social networks, participating in online technology forums

Task 8: Cyber Hygiene (Demonstration): Awareness of various threats on the internet. Importance of security patch updates and anti-virus solutions. Ethical Hacking, Firewalls, Multi-factor authentication techniques including Smartcard, Biometrics are also practiced

Word

Task 9 : MS Word Orientation:
Accessing, overview of toolbars, saving files, Using help and resources, rulers, formatting, Drop Cap, Applying Text effects, Using Character Spacing, OLE in Word, using templates, Borders and Colors, Inserting Header and Footer, Using Date and Time option, security features in word, converting documents while saving

Task 10: Creating project: Abstract Features to be covered: Formatting Styles, Inserting table, Bullets and Numbering, Changing Text Direction, Cell alignment, Footnote, Hyperlink, Symbols, Spell Check, Track Changes, Images from files and clipart, Drawing toolbar and Word Art, Formatting Images, Textboxes and Paragraphs.

Excel

Task 11: Using spread sheet features of EXCEL including the macros, formulae, pivot tables, graphical representations

Creating a Scheduler - Features to be covered: Gridlines, Format Cells, Summation, auto fill, Formatting Text

LOOKUP/VLOOKUP

Task 12: Performance Analysis - Features to be covered: Split cells, freeze panes, group and outline, Sorting, Boolean and logical operators, Conditional formatting

Power Point

Task 13: Students will be working on basic power point utilities and tools which help them create basic power point presentation. Topic covered during this week includes: PPT Orientation, Slide Layouts, Inserting Text, Word Art, Formatting Text, Bullets and Numbering, Auto Shapes, Lines and Arrows, Hyperlinks, Inserting – Images, Clip Art, Tables and Charts in Powerpoint.

Task 14: Focusing on the power and potential of Microsoft power point. Helps them learn best practices in designing and preparing power point presentation. Topic covered during this week includes: - Master Layouts (slide, template, and notes), Types of views (basic, presentation, slide slotter, notes etc), Inserting – Background, textures, Design Templates, Hidden slides, OLE in PPT.

TEXT BOOK:
Faculty to consolidate the workshop manuals using the following references
1. Computer Fundamentals, Anita Goel, Pearson
2. Scott Mueller’s Upgrading and Repairing PCs, 18/e, Scott. Mueller, QUE, Pearson, 2008
3. Information Technology Workshop, 3e, G Praveen Babu, M V Narayana BS Publications.

REFERENCE BOOK:
Essential Computer and IT Fundamentals for Engineering and Science Students, Dr. N.B. Venkateswarlu